skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mishura, Teddy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper investigates the Robinson graphon completion/recovery problem within the class of $L^p$-graphons, focusing on the range $$5 5$, any $L^p$-graphon $$w$$ can be approximated by a Robinson graphon, with error of the approximation bounded in terms of $$\Lambda(w)$$. When viewing $$w$$ as a noisy version of a Robinson graphon, our method provides a concrete recipe for recovering a cut-norm approximation of a noiseless $$w$$. Given that any symmetric matrix is a special type of graphon, our results can be applicable to symmetric matrices of any size. Our work extends and improves previous results, where a similar question for the special case of $$L^\infty$$-graphons was answered. 
    more » « less